Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models
نویسندگان
چکیده
Cyclone separators are widely used in a variety of industrial applications. A low-mass loading gas cyclone is characterized by two performance parameters, namely the Euler and Stokes numbers. These parameters are highly sensitive to the geometrical design parameters defining the cyclone. Optimizing the cyclone geometry therefore is a complex problem. Testing a large number of cyclone geometries is impractical due to time constraints. Experimental data and even computational fluid dynamics simulations are time-consuming to perform, with a single simulation or experiment taking several weeks. Simpler analytical models are therefore often used to expedite the design process. However, this comes at the cost of model accuracy. Existing techniques used for cyclone shape optimization in literature do not take multiple fidelities into account. This work combines cheap-to-evaluate well-known mathematical models of cyclones, available data from computational fluid dynamics simulations and experimental data to build a triple-fidelity recursive co-Krigingmodel. This model can be used as a surrogate with a multi-objective optimization algorithm Communicated by Zenon Mroz. B Prashant Singh [email protected] 1 Division of Scientific Computing (TDB), Department of Information Technology, Uppsala Universitet, Box 337, 751 05 Uppsala, Sweden 2 Department of Information Technology (INTEC), Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium 3 Mechanical Power Engineering Department, Faculty of Engineering at El-Mattaria, Helwan University, Masaken El-Helmia P.O., Cairo 11718, Egypt 4 Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
منابع مشابه
Wing-body Optimization Based on Multi-fidelity Surrogate Model
This paper focuses upon the efficient surrogate model algorithm for expensive simulation-based design optimization problems. Co-kriging method is used to develop a multi-fidelity surrogate model using two independent datasets. To achieve this objective, wing-body problem is taken as an example of application for highdimensional complex design problem. In addition, a simple sampling analysis is ...
متن کاملMulti-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems
In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...
متن کاملModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملRecent developments in simulation-driven multi-objective design of antennas
This paper addresses computationally feasible multi-objective optimization of antenna structures. We review two recent techniques that utilize the multi-objective evolutionary algorithm (MOEA) working with fast antenna replacement models (surrogates) constructed as Kriging interpolation of coarse-discretization electromagnetic (EM) simulation data. The initial set of Pareto-optimal designs is s...
متن کاملMulti-fidelity modeling and optimization of biogas plants
An essential task for operation and planning of biogas plants is the optimization of substrate feed mixtures. Optimizing the monetary gain requires the determination of the exact amounts of maize, manure, grass silage, and other substrates. For this purpose, accurate simulation models are mandatory, because the underlying biochemical processes are very slow. The simulation models may be time-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 175 شماره
صفحات -
تاریخ انتشار 2017